Insulin receptor substrate-2 (Irs2) in endothelial cells plays a crucial role in insulin secretion.

نویسندگان

  • Shinji Hashimoto
  • Naoto Kubota
  • Hiroyuki Sato
  • Motohiro Sasaki
  • Iseki Takamoto
  • Tetsuya Kubota
  • Keizo Nakaya
  • Mitsuhiko Noda
  • Kohjiro Ueki
  • Takashi Kadowaki
چکیده

Endothelial cells are considered to be essential for normal pancreatic β-cell function. The current study attempted to demonstrate the role of insulin receptor substrate-2 (Irs2) in endothelial cells with regard to insulin secretion. Endothelial cell-specific Irs2 knockout (ETIrs2KO) mice exhibited impaired glucose-induced, arginine-induced, and glucagon-induced insulin secretion and showed glucose intolerance. In batch incubation and perifusion experiments using isolated islets, glucose-induced insulin secretion was not significantly different between the control and the ETIrs2KO mice. In contrast, in perfusion experiments, glucose-induced insulin secretion was significantly impaired in the ETIrs2KO mice. The islet blood flow was significantly impaired in the ETIrs2KO mice. After the treatment of these knockout mice with enalapril maleate, which improved the islet blood flow, glucose-stimulated insulin secretion was almost completely restored to levels equal to those in the control mice. These data suggest that Irs2 deletion in endothelial cells leads to a decreased islet blood flow, which may cause impaired glucose-induced insulin secretion. Thus, Irs2 in endothelial cells may serve as a novel therapeutic target for preventing and ameliorating type 2 diabetes and metabolic syndrome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia.

To investigate the role of insulin receptor substrate (IRS)-2 in vivo, we generated IRS-2-deficient mice by gene targeting. Although homozygous IRS-2-deficient mice (IRS-2-/- mice) had a body weight similar to wild-type mice, they progressively developed type 2 diabetes at 10 weeks. IRS-2-/- mice showed insulin resistance and a defect in the insulin-stimulated signaling pathway in liver but not...

متن کامل

Gene Silencing of Phogrin Unveils Its Essential Role in Glucose-Responsive Pancreatic β-Cell Growth

OBJECTIVE Phogrin and IA-2, autoantigens in insulin-dependent diabetes, have been shown to be involved in insulin secretion in pancreatic beta-cells; however, implications at a molecular level are confusing from experiment to experiment. We analyzed biological functions of phogrin in beta-cells by an RNA interference technique. RESEARCH DESIGN AND METHODS Adenovirus-mediated expression of sho...

متن کامل

Insulin Receptor Substrate 2 Controls Insulin-Mediated Vasoreactivity and Perivascular Adipose Tissue Function in Muscle

Introduction: Insulin signaling in adipose tissue has been shown to regulate insulin's effects in muscle. In muscle, perivascular adipose tissue (PVAT) and vascular insulin signaling regulate muscle perfusion. Insulin receptor substrate (IRS) 2 has been shown to control adipose tissue function and glucose metabolism, and here we tested the hypothesis that IRS2 mediates insulin's actions on the ...

متن کامل

Overexpression of IRS2 in isolated pancreatic islets causes proliferation and protects human beta-cells from hyperglycemia-induced apoptosis.

Studies in vivo indicate that IRS2 plays an important role in maintaining functional beta-cell mass. To investigate if IRS2 autonomously affects beta-cells, we have studied proliferation, apoptosis, and beta-cell function in isolated rat and human islets after overexpression of IRS2 or IRS1. We found that beta-cell proliferation was significantly increased in rat islets overexpressing IRS2 whil...

متن کامل

The Role of Insulin in Wound Healing Process: Mechanism of Action and Pharmaceutical Applications

Abbreviations: PI3K-Akt: Phosphatidylinositol-3-Kinase and Protein Kinase B; Rac1: Ras-Related C3 Botulinum Toxin Substrate 1; LN332: Laminin 332; EGF: Epidermal Growth Factor; EGF-R: Epidermal Growth Factor Receptor; IGF1&IGF-II: Insulin-Like Growth Factor 1&2; Gtpase: Guanosine 5’-Triphosphate Hydrolase Enzyme; IRS-1, IRS-2: Insulin Receptor Substrate 1&2; ERK: Extracellular Receptor Kinase; ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 64 3  شماره 

صفحات  -

تاریخ انتشار 2015